Posts Tagged moisture

Moisture – Part Four, Solutions

Part of the solution to the problem of moisture migration is allowing the water to have its way. In above grade walls, that means letting it go through the wall, then redirecting it through flashing and weep holes if possible, and most importantly, using a breathable mortar that is more porous than the brick or stone.

Below grade, keep water from resting on the outside of the foundation walls in saturated soil conditions. Create a drainage system, a way for the water to move away from the foundation, perhaps installing perforated foundation tile at the base footing of the wall with gravel fill. Again, check gutters and downspouts to ensure they are clean and take water away from the wall, extending downspouts at least three feet past the elbow at grade level is a good idea. Grade the soil and pavement materials around the building to encourage water runoff and avoid collecting and pooling near walls.

A digital moisture meter in use

Detecting trouble in advance – The use of a moisture meter can sometimes be helpful in determining a baseline for acceptable moisture content in a historic masonry walls. Because not all masonry walls are created or built equally, all have varying levels of moisture depending on conditions. What is important in establishing a baseline is looking for the wall sections that are performing well.  In these areas, take readings to compare to areas with deteriorating brick or stone. This will put you on a specific path toward understanding what to expect in the future.

Also consider choosing breathable mortar materials like lime putty or hydraulic lime blended with coarse aggregate particles – often the vary material that has turned to dust over the past 100 years. Do not try to make it stronger or better. Just match the old lime mortar and move onto the next project. If the original historic mortar has turned into dust or is falling out of the wall, it is likely a lime mortar. It has done the hard work of absorbing more water than the brick over and over again and now needs replacement. The brick or stone is generally preserved in these cases.

The new lime mortar replacement mixture should match the old mortar and perform as the old mortar did – it to will turn to dust and fall out of the wall in the next hundred years, giving the next generation something to fix.

Lime Putty Suppliers in the US:

U.S. Heritage Group, Inc.

Virginia Lime Works

Hydraulic Lime Suppliers in the US:

Limeworks.us

U.S. Heritage Group, Inc.

Virginia Lime Works

Advertisements

, , , , , , , , ,

2 Comments

Moisture – Part Two, Capillary Suction

As promised from yesterdays post we were going to take a look at how water enters a building. We know water can enter a building in many ways, through masonry walls, roofs, windows, and saturated soil surrounding the foundation just to name a few. There is also interior sources of water, such a condensation from cooking, cleaning, showering – generally occupying the home. However, this is not the whole story when it comes to historic masonry walls. What we don’t talk about much is the “embodied water,” the water that remains in the walls at all times. Old historic masonry walls are moist in the center, due to the porosity of the masonry units, the lime mortars, and the thickness of the wall – it’s just hard for them to dry out completely. They really never do completely dry out, especially if they are foundation walls. We must consider this condition and account for moisture already present within the wall, because if we don’t, we could unintentionally trap moisture even when the outside of the wall feels normal and dry.

Capillary suction of water at different widths

Load-bearing historic masonry walls (16 inches to 24 inches in thickness) are porous, capable of wicking large amounts of water great distances due to capillary suction. The smallest cracks and pores found in mortar, brick and stone can bring on water in a big way. The action of wicking is energized by the horsepower of smallness. The smaller the pores or cracks in the wall, the more powerful the draw of the wicking action. If you have given blood, you may recall the very small glass tube the nurse uses to take a droplet of blood from your fingertip with a seemingly invisible vacuum cleaner. The blood droplet instantly goes up the tube – effortlessly, capillary suction at work.

The horsepower of smallness regarding the capillary action of water should be cause for concern, because architects and contractors are often focused on repairing large cracks in buildings while leaving the small ones untreated. Don’t be deceived. The small cracks, even the hairline cracks, are where the suction power is. One way to slow down the power of capillary suction is to reduce the surface area of the material that comes in contact with the water source. For small hairline cracks, injecting dispersed hydrated lime (DHL) into the crack with a syringe will sometimes do the trick. Unlike epoxy or cement, DHL remains flexible after it cures and maintains good vapor transmission, allowing the wall to breathe while at the same time halting the water – pulling the plug on the vacuum of capillary suction.

Dispersed Hydrate Lime (DHL) is a product imported from Germany and has been used successfully on many historic masonry structures here in the United States for over 10 years. Information on the product can be obtained by contacting the U.S. Heritage Group based in Chicago. Other vender choices I’m sure are available, but this is the product we have specified and are most farmiliar with using.

SPC Training video on DHL injection: http://www.youtube.com/user/SpeweikPreservation?blend=4&ob=5#p/u/4/mlGm2XvEGF8

 

, , , , , , , ,

Leave a comment

Moisture – Part One, Watertight Envelope Theory

Stone decay from hard cement repointing - Historic Scotland

The new term on the streets used by industry consultants to describe the details of how a building takes on water and then (hopefully) sheds it is “water management.” The longevity of historic masonry walls relies heavily on how water is managed in and around them. I am personally not yet convinced we can control water. I can work to manage where it goes, and possibly how long it stays – by redirecting it, but in the end it goes where it wants, the easiest way. When you attempt to fight water it usually wins. The ways water impacts a building depends on how long it stays – which is directly correlated to its architectural design, geographic location, topography, soil, the water table, the type of brick, stone or mortar, and whether the building has recently been restored.

Sometimes the understanding of historic load-bearing masonry walls built with lime mortar materials is not established, or respected, prior to a restoration project being undertaken. While the joints may look like they are in need of repointing due to deterioration, it’s important to know why they deteriorated in the first place. The cause is most likely from water saturation – then freezing and thawing or extreme temperature variations. One of the challenges is understanding that a building can, and does, breathe though its mortar joints as well as its masonry units.

The shear thickness of most load-bearing masonry walls keep the water out. The original building materials made for quick evaporation of the water on the surface of the walls and kept the inside dry, but this breathability does takes its toll on old lime mortar joints and they need to be repointed in high moisture areas every 75 to 100 years or so. Problems start when an architect specifies a replacement mortar that is harder than the original (in an effort to make it last longer) than potentially traps moisture inside the wall system. The effort in the restoration repairs is totally focused on keeping water out from coming in through the exterior side of the wall. The problem is that old masonry walls contain a certain amount of moisture already and often do not perform very well with harder/stronger mortar joints surrounding them.

When the goal of the restoration project is to create a Watertight Envelope you’d better run the other way – fast.  “Watertight Envelope” and “Historic Load-bearing Masonry” should not be used in the same sentence. Keeping water on the outside would seem to be an honorable goal for any restoration project, but observing the current condition of some masonry buildings restored in the past 10 years tells us a much different story, a troubling one. Basically, the buildings subjected to this watertight-envelope theory are not doing very well.

Where waterproofing and harder cement-based mortars are applied we find decay patterns that are surprising – in just a decade after application. Instead of the mortar surfaces wearing, there is a new pattern of brick and stone decay. Strong osmotic and hydrostatic pressures build up in brick and stone that are subjected to these hard, strong, and water resistant materials.

Tomorrow we will discuss how water enters a building.

 

, , , , , , , , ,

Leave a comment

%d bloggers like this: